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Abstract

The definition of cell identity is a central problem in biology. While single-cell RNA-seq provides a wealth of
information regarding cell states, better methods are needed to map their identity, especially during developmental
transitions. Here, we use repositories of cell type-specific transcriptomes to quantify identities from single-cell
RNA-seq profiles, accurately classifying cells from Arabidopsis root tips and human glioblastoma tumors. We apply
our approach to single cells captured from regenerating roots following tip excision. Our technique exposes a
previously uncharacterized transient collapse of identity distant from the injury site, demonstrating the biological
relevance of a quantitative cell identity index.
Background
Many important events in development and disease
involve transitions between different cellular identities,
demanding methods that can follow cells as they diffe-
rentiate, undergo reprogramming to highly potent states,
or transdifferentiate during tissue regeneration. The de-
velopment of single-cell RNA-seq technology [1-4] has
provided insights into states of individual cells, permit-
ting the analysis of cellular trajectories during dynamic
periods of development. Single cell analyses have en-
abled cellular states to be examined for rare cells in early
development as they undergo differentiation [5,6] and
during transitions from stochastic to stereotypical states
in cellular reprogramming [7].
In order to identify distinct cell types amongst hetero-

geneous cell populations, single cell studies have mostly
relied on unsupervised clustering techniques [4,6,8].
These techniques utilize RNA-seq profiles of the cells
themselves to group the cells based on similarity, after
which, in a post hoc analysis, known markers are used to
map cell identity onto clusters [8].
However, cell type classification is complicated by the

fact that extrinsic factors, such as differences in micro-
environments or transient physiological responses, can
manifest in large expression changes that contribute to
variability between cells. Methods that use whole-
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transcriptome correlation are thus biased by physio-
logical and other batch effects. Classification is further
complicated by biological noise, resulting from stochas-
tic, burst-like transcription events [9] and the substantial
technical noise inherent in single cell sequencing data
[4,10,11]. This technical noise stems from the low num-
ber of mRNAs present in single-cell samples and the
stochastic nature of the amplification and sample pre-
paration process [11,12]. Thus, indices of cell identity
must be robust to biological and technical noise in single
cell measurements but also sensitive enough to detect
weak signals that represent mixed cell character or tran-
sitional states.
Comprehensive repositories of cell and tissue expres-

sion profiles are a valuable resource for quantifying both
cell identity and transitional or mixed cell states using a
supervised approach. Such repositories are available for
a growing number of systems, including the mouse brain
[13,14], human and mouse hematopoietic system [15-17],
various cancer types [18], and the plant root [19,20] and
shoot [21].
An important consideration that has not been formally

addressed is the selection of genes that can serve as cell
identity markers for single cell experiments. Tissue and
cell type-specific reference libraries are typically do-
minated by noisy biological patterns with respect to cell
identity [22], where most markers are expressed in mul-
tiple cell types, even if they have relatively restricted ex-
pression domains or temporal patterns. Extreme filtering
of large datasets for highly specific markers reduces the
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power to detect cell identity in noisy systems, as small
numbers of markers make inferences susceptible to
noise. Using a large number of markers requires the in-
corporation of less specific markers, decreasing the spe-
cificity of the identity call. Thus, there is an optimal
number of markers for detecting identity, which may
vary between experimental systems.
To address these issues, we propose an approach for cell

type classification that utilizes sets of informative markers,
which are not required to be uniquely expressed in a sin-
gle cell type. To select appropriate markers, we adapted
an information-theory based approach that analyzes tech-
nical and biological variability in expression across envi-
ronments and expression domains [22] and utilizes this
information to generate an index of cell identity (ICI) for
single-cell mRNA-seq samples. The ICI of a given cell rep-
resents the relative contribution of each identity as eva-
luated from a reference dataset of cell profiles. The use of
a quantitative score allows the identification of transitional
and chimeric identities. We apply our method to single
cells extracted from the Arabidopsis root meristem, which
has a wealth of cell type- and developmental stage-specific
expression profiles [19,20,23] and to a population of 365
single cells previously isolated from five human glioblast-
oma tumors [24]. We show that our method is accurate in
Figure 1 Characterization of single-cell profiles from the Arabidopsis
collected in this study. WOX5:GFP marks the QC, and WOL:CRE-GR 35S:lox-CF
the technical repeats (black) and in four individual QC cells from the same
sequencing depth for different cell types. Red, QC; blue, stele; green, atrich
the single cell profiles. Batches are color coded (blue [10]; orange, this stud
classifying single cells, can optimize marker selection, and
performs well with plant and animal datasets.
To assess the utility of our method in classifying transi-

tional and complex identities, we use it to analyze plant
cells isolated from regenerating roots, as plant cells are
known to have high levels of developmental plasticity.
Roots grow through rapid cell division in growth zones
called meristems that contain a stem cell niche. At the
center of the stem cell niche is a group of cells with low-
mitotic activity known as the quiescent center (QC) [25]
(Figure 1A). When the root tip, including the stem cell
niche, is completely removed, missing cell types rapidly re-
generate from differentiated cells in the remaining stump
within 24 to 48 hours [26,27]. As a test of our methods to
quantify cell identity, we followed a set of regenerating
cells by permanently marking the root stele tissue, an in-
ternal tissue that contains early differentiation stages of
vascular cell types, and isolating individual, marked cells
immediately following tip excision and at 16 hours after
excision. Our method detected a transient loss of original
identity in cells throughout the stele during the regene-
ration process, which is validated by fluorescent marker
analysis. These results suggest that regeneration involves a
rapid, transient, and widespread loss of tissue identity
during the reorganization of the root tip.
root. (A) Confocal image showing the markers used and cell types
P is a lineage marker for the stele. (B) Noise (coefficient of variation) in
batch (orange). (C) Number of genes detected as a function of
oblasts. (D) Hierarchical clustering of a cross-correlation matrix between
y) to show batch effects.
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Results
Generation of single cell profiles of the root meristem
To generate single-cell mRNA-seq profiles from differ-
ent tissues in the well-characterized Arabidopsis root,
isolated Arabidopsis root tips with fluorescently marked
tissues were treated with cell-wall digesting enzymes for
approximately one hour, and individual cells were col-
lected using a glass mouth pipette (see Materials and
methods). This procedure allowed us to visually confirm
the presence of a single fluorescent cell in the capillary
pipette. Overall, 31 individual cells were collected and
processed: 24 QC cells (marked by WUSCHEL-Related
Homeobox 5 (WOX5:GFP) [28] and collected in four
batches), and 7 stele cells (clonally marked withWOODEN
LEG (WOL) WOL:CRE-GR 35S:lox-CFP; Figure 1A) that
consisted of three cells collected immediately after re-
moving the stem cell niche (0 h post-excision) and four
cells collected at 16 h post-tip excision.
To assay technical noise, technical replicates were

generated by pooling four of the QC cells, lysing and
splitting the mix into four aliquots (Figure 1A). We pre-
ferred the use of a small number of cells rather than a
diluted sample of many cells, to better represent tech-
nical variability due to working with small quantities of
RNA at all steps. Each sample was processed and ampli-
fied individually according to previous protocols [1], and
amplified cDNA was sequenced using the Illumina plat-
form to generate 50 bp single-end reads. Overall, 80 to
87% of the reads in each sample mapped to the Arabi-
dopsis TAIR10 genome and over 95% of those reads
aligned to annotated genes. We did not detect any tran-
scripts from intergenic regions since only a few reads
aligned to non-annotated regions (<0.01% of all mapped
reads), and none of the intergenic read clusters spanned
a region greater than 300 bp (data not shown).
Consistent with earlier single-cell RNA-seq studies

[10,11], technical variation was highly correlated with
expression level (Figure 1B). This technical noise was
greatest at low expression levels; however, at high ex-
pression levels, variation between individual QC cells is
greater than the variation between the pooled-and-split
cells (P < 0.05, Kolmogorov-Smirnov test; Figure 1B),
suggesting that there is biological variability between QC
cells that exceeds the technical variability.
Since we sought to assess cell identity, we first exa-

mined the effects of read depth and the transcriptional
patterns of known markers in the well-characterized
root system. For all subsequent analyses, we combined
our single-cell data with 13 previously collected root
cells [10]: 6 QC cells (from the same reporter line used
in our experiments), and 7 epidermal atrichoblast cells,
marked by the reporter GLABRA2(GL2):GFP. Together,
this allowed us to assess well-documented markers in
three different cell types and also examine batch effects
stemming from sampling the same set of cells in dif-
ferent labs.
The number of genes detected in each sample was simi-

lar among the stele cells (approximately 14,000 genes/cell)
but varied between epidermal cells (11,000 to 18,000
genes/cell). We sequenced some of our QC cells to higher
depth to assess the effect of total reads per cell on the
number of detectable genes. The analysis showed that the
libraries saturate at 5 × 107 reads/cell. We detected 4,312
more genes on average than cells sequenced at a depth of
less than 5 × 107 reads/cell (Figure 1C). This suggests that
many more genes are expressed in QC cells than pre-
viously detected by shallow sequencing [10]. Furthermore,
we detected a large number of transcripts expressed at a
low level that show widespread, non-specific transcription,
possibly arising from sporadic transcriptional events.
We found several examples of low level marker expres-

sion in ‘unexpected’ cell types, including the QC marker
WOX5 in one stele cell, the stele-specific gene SHORT
ROOT (SHR) in four QC cells, epidermal marker expres-
sion in one QC cell, and the endodermal/QC-specific gene
SCR in six of the seven atrichoblast samples (Figure S1A
in Additional file 1). To rule out the possibility that the
detection of low-level transcripts arises from ruptured
root cells or other contamination during cell isolation, we
examined the expression of pollen-specific genes, a set
containing many transcripts that are unique to the spe-
cialized gamete and are not detected above noise in roots
of pooled cells [29]. Indeed, sporadic, low-level expression
of many pollen-specific genes was detected (Figure S1B in
Additional file 1), further supporting the observation that
the sampled cells express non-specific transcripts at low
levels.
QC cells are located together in close proximity in the

root, are morphologically indistinguishable, rarely divide,
and are considered to be homogenous [25]. The depth of
coverage for these cells allowed us to assess the con-
sistency in detecting transcripts across theoretically iden-
tical cells. This analysis showed that even single-cell
profiles from the homogenous QC show wide variation in
their transcriptional composition. The cumulative number
of detected genes in all samples declines at a nearly con-
stant rate with each new QC sample regardless of which
lab conducted the experiment (Figure S1C in Additional
file 1). Thus, while we detected about 10,000 genes in any
given QC cell, only 943 genes were detected in all 30 QC
cells. A total of 15,492 genes were expressed in at least
one QC cell. The number of common highly expressed
genes diminishes at a higher rate, with only 11 genes com-
mon to all 30 QC cells (Figure S1C in Additional file 1).
These phenomena appear common in single-cell profiles,
as we and others have observed similar trends in both
plant [10] and recent mouse studies using an in vitro
transcription amplification technique [11] (Figure S1D in
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Additional file 1). Our analysis highlights two important
features of single-cell profiles that should be considered
when assessing identity from known markers. First,
single-cell profiles are likely to display low-level sporadic
expression of transcripts from ‘ectopic’ identities, and
second, the absence or low-expression of any given cell
type-specific marker in these profiles is highly likely.

A method for classification of cell identity
The biological and technical noise associated with the
root single-cell profiles suggests that robust classifica-
tion of cell identity is not a trivial problem. Indeed, in a
hierarchical clustering of pair-wise cell-cell Pearson cor-
relation values (Figure 1D), cell profiles grouped mainly
according to lab of origin rather than tissue of origin.
This outcome makes cell affinity comparisons across
labs and experiments problematic.
To establish a method for robust quantification of cell

identity, we utilized an extensive reference set of tissue-
specific expression profiles collected over a decade of
research using cell sorting and profiling with the ATH1
Affymetrix microarray [19,20,23,30-32]. To identify
markers which can be used to quantify identity in single
cells, we adapted an information theory-based method
to calculate Spec values, which represent the amount of
information each transcript provides for determining
cell identity [22]. From the cell type-specific dataset,
we selected microarray profiles mostly from non-
overlapping root tissues, collected under a variety of
physiological states. These profiles combined publicly
available data and new microarray profiles of the QC
that were generated for this study (Additional file 2).
The use of multiple physiological states to represent
single identities ensured a set of robust markers for a
given cell identity.
Calculating Spec values requires binning of the data,

and we sought to optimize bin selection to obtain robust
markers. We assigned transcript levels into one of two
bins (high/low expression), separating background and
true expression (Materials and methods). We set the
cutoff for background expression under the assumption
that optimal markers would be expressed at background
levels in the majority of cells and true expression would
be relatively rare. This routine established a range for
the background cutoff, within which we established a
precise cutoff by finding the cutoff value that maxi-
mized the Spec score (Materials and methods). Using
this routine, the algorithm automatically selected mar-
kers for which high expression in specific cell types was
well separated from the background levels in the ma-
jority of cells. Markers were ordered according to their
Spec scores, and we determined markers for each of the
15 root tissues by selecting genes with the highest Spec
score for a given tissue (Figure 2A; Additional file 3).
Thus, Spec scores provided the ability to rank markers
according to their information content on cell identity.
For each tissue, a marker set was chosen to provide

the same level of information. Some tissues have more
highly informative markers than others (Figure 2A).
Therefore, Spec information scores were added until
they reached a defined constant, resulting in more dis-
tinct tissues having fewer markers than less distinct tis-
sues. In this way, the most highly informative markers
are used to diagnose each cell identity and each cell type
is given the same level of diagnostic power. Based on
these markers, we compute an ICI for each tissue as fol-
lows. Using RNA-seq read counts from each single-cell
profile, we calculate the mean expression of all genes in
the predefined marker set and weight each gene by its
Spec score for the particular identity. To down-weight
cases of sporadic noisy expression of individual markers
and control for false positives, we then adjust the score by
the proportion of markers expressed (expression level >0),
effectively weighting in favor of identities for which many
markers are detectable. For any given single cell that is
queried, the procedure then determines an ICI for each
cell type that is then normalized to a range of 0 to 1. This
method generates a relatively simple index that is robust
to low-level sporadic expression (false positives) and fre-
quent absence of a given marker (false negatives). To gen-
erate a confidence measure, we randomized marker sets
of equal size to the original and performed 1,000 permuta-
tions to establish a null distribution of ICIs for each cell
type (see Materials and methods). We used a P < 0.05 cut-
off to determine significant ICI above background.
The above procedure weights the contribution of a

marker to the ICI by its pre-determined specificity in
predicting a cell type. However, one free parameter in
our method is the cumulative information threshold for
marker selection, which determines the number of
markers used per tissue. We analyzed the effect of this
parameter on detection power by varying marker set
size. We calculated the ICI for each cell from both our
own experiments and the previously generated QC and
epidermal cell profiles. Within a wide range of cumula-
tive information threshold, representing relatively small
or large marker sets, the procedure was able to classify
all cells correctly (Figure S2A in Additional file 1). How-
ever, using a very low cumulative information threshold
yielded results that were highly sensitive to the thresh-
old, as indicated by a local variability measure (hereafter,
‘ICI variability’; Figure 2B). On the other hand, increas-
ing the cumulative marker threshold resulted in lower
mean maximal ICI (hereafter, ‘ICI signal’; Figure 2C;
Figure S2 in Additional file 1) because a greater number
of less-specific, ‘noisy’ markers were included in the
analysis. The result illustrates a tradeoff between robust-
ness (ICI variability) and signal strength (ICI signal) in



Figure 2 Information-based index of cell identity robustly assigns cell type to single cells. (A) Spec score with increasing marker set sizes
in different root tissues measuring level of transcript uniqueness in each cell type. CC, Companion Cell; LRM, Lateral Root Meristem; PPP,
Phloem-Pole Pericycle; XPP, Xylem-Pole Pericycle. (B) ICI variability as a function of the number of markers used. Variability is measured as the
Euclidean distance between ICI vectors for cumulative information threshold i and i + 1. (C) ICI signal for the 30 plant cells used in the study as a
function of the number of markers. (D) ICI output for the single cells used in this study, showing the predicted identity in the heatmap and the
cell type marked by the reporter used to collect the cells. (E) Expression of selected markers for atrichoblast, stele, and QC in the single cells. Note
the overall tendency of marker specificity and substantial noise from either technical or biological sources. (F) Proportion of cell identities called
correct (red), unidentifiable (black), or incorrect (blue) at varying sequencing depths.
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determining marker set size, where ranking markers for
informativeness permits an optimization between the
two effects. The analysis suggests that the cumulative in-
formation threshold should be set in a range where ICI
variability is stable and minimal, while ICI signal is high.
As marker behavior and specificity vary between experi-
mental systems [22], the optimal threshold needs to be
empirically determined. To maximize robustness and
signal strength in the plant dataset, we selected a cumu-
lative information threshold value of 20, which was used
for the rest of the study (Additional file 3).
Using this procedure, all cells picked using the highly

specific QC marker WOX5:GFP were identified as QC
regardless of the lab that generated them, showing the
method is robust to batch effects (Figure 2D). The three
stele cells scored the highest for meristematic xylem
tissue. This tissue represents early developmental stages
of the xylem and is contained within the tissues marked
by the WOL promoter [33]. With respect to epidermal
cells, the previous single-cell study that collected atricho-
blast (non-hair epidermal cells) using GL2:GFP could not
distinguish the isolated cells from a closely related subtype
(trichoblast or hair cells), using transcriptome similarity-
based methods [10]. However, our information-based
approach correctly identified the cells as atrichoblast and
not trichoblasts, showing the method can sensitively
discriminate very subtle differences in cell subtypes
(Figure 2D) and is robust to the noise of single-cell pro-
files (Figure 2E). We investigated the ability of the ICI to
differentiate cell types and account for noise by analyzing
multidimensional scaling plots using the Pearson cor-
relation as a distance measure. When using the expression
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of the markers identified by our algorithm (information
threshold of 20,258 markers), cells could be separated by
tissue, but noise and batch effects were still very apparent.
This noise was evidenced by QC cells occupying a large
space, making it difficult to assign them to a coherent
group (Figure S3A in Additional file 1). In contrast, using
the ICI vectors, identities were clearly distinct, while
batch and lab-dependent effects were no longer evident
(Figure S3B in Additional file 1).

Sensitivity to read depth and chimeric states
Single-cell studies are now being generated for hundreds
and thousands of cells [8], which means each cell is se-
quenced at a very shallow depth. To assay the sensitivity
of our method at different read depths, we generated
shallow read depth samples by resampling and deter-
mined the rates of correct calls for the 40 single root
cells. Our method was sensitive enough to classify the
correct tissue among the 15 possible cell types at high
confidence 87% of the time with 10,000 reads/cell and
91.3% of the time with 500,000 reads/cell (Figure 2F).
Importantly, there were very few incorrect classifications
even at very shallow read depths (1.75% and <0.5% at
10,000 and 50,000+ reads/cell, respectively; Figure 2F).
These results demonstrate the feasibility of our method
in highly multiplexed experiments with shallow sequen-
cing depths.
In addition, one promising application for single-cell

transcriptomics is the ability to track cells as they undergo
differentiation or cellular reprogramming and to identify
chimeric, transitional states or prior state memory. To test
our algorithm on mixed cell states, we generated mixed
cell profiles by randomly sampling reads from either QC
and atrichoblast cells or QC and meristematic xylem cells.
Using a stringent threshold, our algorithm identified both
cell types in a simulated single cell in 62% and 21% of the
cases in QC-atrichoblast and QC-meristematic xylem
mixed cells, respectively (Figure S4 in Additional file 1).
As chimeric identity dilutes both identities, the lack of any
significant identity justifies a lower threshold to explore
potential mixed cell states. Indeed, lowering the threshold
resulted in detection of multiple identities in 75% and 57%
of the simulated QC-atrichoblast and QC-meristematic
xylem mixed cells, respectively (Figure S4 in Additional
file 1). The rate of false positives at a low threshold was
small, as non-pooled cell identities were detected at a low
proportion of 2 to 3% (Figure S4 in Additional file 1).

Classification of single cells from human glioblastoma
tumors
To test our method in a different system, we utilized a
previously profiled collection of 365 cells from five hu-
man glioblastoma tumors, sequenced at low depth [24].
Using The Cancer Genome Atlas (TCGA) whole tumor
transcriptome data from four subtypes of glioblastoma
[34], we identified high information markers among
these tumor types. Overall, glioblastoma subtype mar-
kers had significantly lower Spec scores than root tissues
(Figure 3A; Additional file 4), indicating a significant
overlap in transcript expression between the different
subtypes. Previous analysis by TCGA identified a set of
840 marker genes that can differentiate between the sub-
types [34]. However, our data show that while part of
the TCGA marker set has relatively high Spec scores, a
substantial part of the set has low scores (Figure 3B),
suggesting that a more optimal subset could be identi-
fied. In comparison with the plant dataset (Figure 2B,C),
the ICI variability decreased more rapidly for the glio-
blastoma dataset while ICI signal remained stable with
increasing marker set size (Figure 3C,D), indicating a
wide possible range for an optimal marker number.
A previous attempt to classify the cells using the mean

expression of the TCGA markers could identify 59% of
the cells [24] (Figure 3E). To identify an optimal marker
number, we measured the number of classified cells while
varying cumulative information thresholds. Increasing the
cumulative information threshold consistently improved
the number of identified cells of both single and mixed
fates, and could surpass the performance of previous
methods [24] (Figure 3E). Using a cumulative information
threshold of 110 (1,368 marker genes; Additional file 4),
our method was able to classify 72% of these cells
(Figure 3E).
Both methods show that all tumors were of mixed iden-

tities with cells representing different subtypes at various
proportions [24] (Figure 3F,G). The proportions of the
subtypes in the tumors predicted by our method were
similar to those previously verified [24], with the exception
of the identification of a previously uncharacterized neural
population in tumor MGH26 (Figure 3F,G).
Overall, this analysis shows that the ICI method is

broadly applicable and can provide formal methods to
optimize marker set selection for the diagnosis of cell
identity. In particular, ranking markers based on Spec
values allows the use of many informative markers, opti-
mizing use of previously published marker sets [34].

Classifying transitional states during root regeneration
In order to test the algorithm on cells that undergo regen-
eration, we analyzed the cells from the root stele tissue
16 hours after excision of the root tip (Figure 4B) and re-
moval of the stem cell niche [27]. After decapitation, the
root meristem reorganizes, reforming the missing stem
cell niche and columella from the remnant stump in the
position of the former stele [27]. We engineered a stele-
specific marker, WOL:CRE-GR 35S:lox-CFP (Figures 1A
and 4A,B; Materials and methods) for this experiment
The use of this ‘memory’ marker allowed us to definitively



Figure 3 Marker analysis and identity scores of cells from glioblastoma tumors. (A,B) Spec scores for the glioblastoma markers identified
by our algorithm (A) and for the TCGA markers previously published [34] ordered by rank. Tumor subtypes are: CL, classical; MES, mesenchymal;
NL, neural; PN, proneural. (C,D) ICI variability (C) and ICI signal (D) for the glioblastoma cells. (E) Number of classified cells in all five tumors as a
function of the marker information threshold. Black indicates all classified cells including mixed identities. Gray indicates cells classified as a single
identity. Lines indicate number of cells classified in a previously applied algorithm [24]. (F,G) Identity calls for individual cells from each subtype in
each of the five tumors, using the algorithm and markers in a previous analysis [24] (F), and using the ICI method with a cumulative information
threshold of 110 (G). Each column represents a single cell, and the color-coded bars represent relative identities.
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assign the cell type of origin of the marked cells during tis-
sue regeneration [27].
At a high significance threshold, stele cells from the

regenerating roots had no significant identity (among
the 15 cell types queried; Figure 4C), indicating a quanti-
fiable loss or decrease in cell identity. When the sig-
nificance threshold was relaxed, meristematic xylem was
still the highest identity in these cells (Figure 4D),
although the ICIs were significantly reduced (Student’s
t-test, P < 0.05; Figure 4E). Indeed, expression of most
meristematic xylem markers was reduced, although still
present (Figure S5A in Additional file 1). In addition,
expression of individual known stele and vascular diffe-
rentiation markers, such as the stele-specific vascular
developmental regulator WOL, was reduced in the re-
generating cells (Figure S5B in Additional file 1). The
analysis suggests internal root tissue undergoes a stage
of identity loss during the regeneration process. As cells
are collected following disassociation, their exact spatial
location cannot be confirmed. However, we inferred
from these single-cell profiles and previous work that
the cells selected were not in the distal end of the cut
root stump, as we have shown that these cells near the
injury site undergo rapid reprogramming [27]. Thus, the
result leads us to hypothesize that tissues relatively dis-
tant to the cut site undergo an attenuation of identity,
even though they are possibly outside of the region
where cell identities rapidly reprogram.
To corroborate these results, we examined the ex-

pression of a labile WOL:GFP marker during the re-
generation process. In agreement with our single-cell
data, expression of WOL is transiently down-regulated
throughout the regenerating stele at 16 hours and re-
covers following the regeneration of the root at 48 hours
following excision (Figure 4F-I). We also examined the
markers S4 and S32, which mark the internal meristem-
atic xylem and protophloem tissues, respectively [30].
Both markers were down-regulated throughout the me-
ristem by 16 h post-excision (Figure 4J-O). The signal
for both markers was still visible at low levels, indicating
partial conservation of identity.
The role of this transient loss of internal tissue identity

requires further investigation. However, the example
shows that we can detect quantitative transitions in cell



Figure 4 Quantitative loss of identity in regenerating root vascular cells. (A,B) Induced WOL:CRE-GR 35S:lox-CFP roots, immediately after
(A) and 16 hours (B) following root tip excision. (C,D) Significant ICIs (P < 0.05 (C) and P < 0.2 (D)) for the four cells isolated from the regenerating
root shown in (B). CC, Companion Cell; LRM, Lateral Root Meristem; PPP, Phloem Pole Pericycle; XPP, Xylem Pole Pericycle. (E) Meristematic xylem
ICIs for stele cells. (F-O) Confocal images of WOL:GFP (F-I), S4 (J-L) and S32 (M-O) plants before (F,J,M), immediately after (G,K,N), and at 16
(H,L,O) and 48 (I) hours post-tip excision. Note that expression of vascular markers is greatly diminished at 16 hours.
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fate in regenerating tissue, with cells showing signs of a
collapse of original cell identity during regeneration.
Overall, our techniques provide an approach to quantify
cell identity in single cells in a robust and sensitive man-
ner that should be useful in regeneration and repro-
gramming studies.

Discussion
Single-cell RNA-seq can be used to gain insights into cel-
lular trajectories and intermediate differentiation steps that
are otherwise obscured by bulk analyses. However, classifi-
cation of cell state is a complex problem due to biological
variability among cells and technical noise generated by
small-scale amplification techniques. Furthermore, bio-
logical replicates are not possible, and methods are still
needed to assess the certainty of classification. Here we
introduce a formal approach to identify the state of a cell
and generate a measure of confidence in the classification
of a single or mixed cell identity. Importantly, each cell is
diagnosed independently of others based on a stable refe-
rence set, so the classification is not fit to a particular ex-
periment and does not change as more cells are sampled.
In addition, our method is robust to batch effects that
make separate experiments otherwise difficult to compare.
The composition of the marker set used for cell type
classification is an important parameter that has not
been formally addressed. The biological and technical
noise associated with single cell experiments means that
the presence or absence of a marker is a probabilistic
event. An intuitive solution to the problem is the use of
multiple markers for each cell identity to ‘vote’ on classi-
fication, as we formalize here in a straightforward index.
However, while many markers can be used, not all
markers are equally specific, implying tradeoffs when
setting the composition of the marker set. For example,
intuitively, the presence of several highly specific mar-
kers provides a clear diagnosis. However, such an ap-
proach would frequently fail in single cell experiments
because, as we showed by using several datasets from
different labs, including our own, any given marker may
be absent in a cell or possibly expressed in an ‘ectopic’
cell. Such anomalies, possibly stemming from sporadic
transcription events, are averaged out in pooled cells
and thus escape detection. On the other hand, increasing
robustness by including more markers diminishes power
since markers themselves vary in their informativeness
of cell identity. We could observe these tradeoffs in our
dataset using a gold standard set of handpicked cells
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from well-characterized cell types. When using a low
number of markers (at a low cumulative information
threshold), we observed highly variable ICIs and low
performance in calling cell identity. In contrast, using
high cumulative information decreased the difference
in ICI over background noise and similarly decreased
performance.
We can address this tradeoff systematically using our

approach, which quantifies the predictive value (infor-
mation) of markers on cell identity. We determine cell
identity using a scoring index that is weighted by the in-
formation value of the marker. This approach provides
robustness by enabling the use of large marker sets while
it minimizes the loss of power by down-weighting less
informative markers. In addition, the cutoff for cumula-
tive information can be optimized using ICI variability
and ICI signal over increasing marker set sizes. Such
analysis does not require a gold standard dataset and
can be optimized using experimental data. Overall, this
process provides a systematic approach to using a large
marker set to increase certainty in cell identity calls
without loss of power to detect weak signals. We note
that the current limited availability of high-quality
single-cell datasets precludes the testing of our method
in the full set of scenarios to which it can be applied,
and we suggest that future assessment of the method
will further clarify its performance.
One application of these methods is determining cell

identity during dynamic developmental transitions. Key
questions include: How do cells transition from one cell
type to another in order to reform injured tissue, and,
what is the relative role of dedifferentiation and transdif-
ferentiation in this phenomena [35-37]?
Single cell transcriptomics combined with identity

analysis tools can address these questions. The challenge
in this problem is confidently distinguishing cell fate
transition from natural variability and noise. Unsuper-
vised techniques are not generally designed for discrete
or mixed cell classification, as we show that batch effects
and other sources of variability do not lead to clear
boundaries between clusters of different cell identities.
In addition, mixed cell fates would not be expected
to necessarily occupy the intermediate space between
known cell types. The approach we developed can be
used to quantify the loss of identity and to detect the
presence of multiple identities in a single cell profile.
In single cells obtained from meristematic vascular

tissue of regenerating roots, we were able to detect a
previously uncharacterized transient state of identity loss
during the regeneration process. These same cells showed
a transient loss of expression of WOL, a regulator of the
plant response to the phytohormone cytokinin [33]. The
loss of identity detected was in both meristematic xylem
and phloem tissues, and analysis of fluorescent markers
corroborated a meristem-wide transient loss of identity in
the vascular tissue. This loss of identity may be required
to re-establish the differentiation gradient that is normally
present in the root meristem and is disrupted by the de-
capitation of the tip. Although the nature of this transient
state requires further investigation, the result illustrates
how the ability to sensitively map and quantify changes in
cell identity permits high resolution analysis of tissue
dynamics during developmental processes. Overall, the
ability of our method to quantify multiple identities in
single cells makes it a useful tool for future studies in mul-
tiple experimental systems.

Conclusions
We present an information-based method for quantifica-
tion of cell identities using available cell-type repositories
and single-cell RNA-seq profiles. Using our method we
identified high-information markers for the Arabidopsis
root and for human glioblastoma subtypes and used them
to classify single cells isolated from theses tissues with
high fidelity. Using the method, we identified intermediate
states occurring during root regeneration.

Material and methods
Generation of marker lines
An inducible, stele-specific lineage marking line (pH7WOL:
CRE-GR) was generated using a modified CRE:LOX
system, where CRE recombinase driven by the well-
characterized stele promoter (WOL) is sequestered to the
cytoplasm by fusion to the glucocorticoid receptor (GR).
Upon dexamethasone (DEX) induction, the recombinase
excises a terminator flanked by LOX sites to allow the
constitutively active plant promoter CaMV 35S to drive
fluorescent reporter (ER-CFP), permanently marking the
induced cell and its daughters. Constructs were intro-
duced into Col-0 backgrounds. The marker lines S4 and
S32 were described previously [30].

Microscopy
For confocal imaging, plants were briefly stained in pro-
pidium iodide (PI), mounted in water, and imaged using
a Leica SPE confocal microscope with × 20 and × 63
magnification and 405 nm, 488 nm, and 561 nm lasers
to excite cyan fluorescent protein (CFP), green fluo-
rescent protein (GFP), and PI, respectively. Voltage and
gain settings were held constant for each marker during
the time series.

Plant growth, isolation of single cells and RNA-Seq
Seeds were placed on agar plates (1 ×Murashige and
Skoog salts (Sigma M5524), 0.5% sucrose ), stratified at
4°C for 48 h, and placed vertically in growth chambers
set to 23°C and a 16 h light/8 h dark cycle. WOX5:GFP
plants were harvested 5 days after stratification, before
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WOX5:GFP signal is apparent in emerging lateral roots.
WOL:CRE-GR 35S:lox-CFP plants were transferred at
6 days after stratification to induction plates (1 ×MS,
0.5% sucrose, 10 μM DEX) for 24 h and then returned
to 1 ×MS plates. Root tips were then cut as described
previously [27] at a distance of 130 μm above the colu-
mella, removing the QC and surrounding stem cells, and
returned to 1 ×MS plates for 16 h. Control plants were
left on 1 ×MS plates and cut at 130 μm just before har-
vesting. To isolate the root tips, roots, all grown on a
single plate, were subjected to a 10 to 15 minute treat-
ment in cell wall digestion solution, as previously de-
scribed [38], to dissociate the root tips containing the
meristem. Those tips were collected and subject to
further treatment for a total of approximately 1 hour.
Fluorescently marked cells were isolated under a fluo-
rescence dissecting scope and collected with a glass
mouth pipette. To verify single cells were picked,
marked cells were transferred to a clean dish, re-
pipetted into phosphate-buffered saline, and transferred
into an approximate volume of 1 μl of lysis solution.
cDNA synthesis and amplification were then preformed
as described by [1]. Amplified cDNA was sheared with
microTUBs using a CovarisTM S2 System, and the library
was prepared using TruSeq DNA Sample Preparation
Kit (low throughput protocol) and sequenced on an
Illumina HiSeq 2000, generating 50 bp single end reads.
Resulting reads were aligned to the Arabidopsis genome
(TAIR10) using Bowtie2 (parameters: –local -k 6). Gene
expression values were calculated by summing the num-
ber of reads aligning to any annotated gene exon, using
ngsutils. Reads aligning to more than one genomic loca-
tion were counted as partial read. Genes with coverage
of less than 200 bp were removed from downstream
analysis. Number of reads per gene was normalized to
library depth and log2 transformed. For Cel-Seq cells,
40 single QC cells were isolated from WOX5:GFP plants
and processed according to [3]; data were deposited
in Gene Expression Omnibus. Analysis was performed
using R 2.15.2.

Hierarchical clustering and multidimensional scaling
Hierarchical clustering was performed using Pearson
correlation scores for log2 transformed normalized read
counts. Multidimensional scaling was performed using
the distance measure (1 - R, where R is the Pearson cor-
relation score between two samples).

Spec value calculation
Spec score for each marker and tissue were identified ac-
cording to the algorithm described in [22], using two
expression classes and the MAS5 processed dataset of
microarray experiments detailed in Additional file 2. The
Spec algorithm allows the identification of absence
markers in which the given tissue is characterized by
lack of expression, designated using negative Spec value.
As these markers are not used by our algorithm, nega-
tive Spec scores were set to 0. For the plant dataset, we
filtered genes shown to be induced by the cell wall di-
gestion process [19] or constitutively highly expressed
(median >250). Calculating Spec scores requires binning
of the data, but does not prescribe an optimal method to
determine bin size [22]. To identify optimal bin sizes, we
sought to find the cutoff between background noise and
true expression. Since the data were too scarce to infer a
distribution and an inflection point, we used an empir-
ical method in which, for each gene, we binned its ex-
pression across the samples into l equal sized bins, and
designated the number of samples in each bin as (o1…l).
We calculated the null expectation for the number of
samples in each bin (e) as simply e =M/l, where M is the
number of total measurements made among all cell
types and replicates (M = 98 for plant; M = 173 for
TCGA data). We then identified the highest bin (m)
which satisfies om < e, signifying the transition from
abundant noise to high expression. Following the identi-
fication of the cutoff region, we calculated the precise
background cutoff value by finding the value in the pre-
ceding bin that maximized the Spec score.
In both the root data and the TCGA dataset, l was set

to 10 but results were robust to a range of values of this
free parameter. We also set an upper limit on the bin
that marked the transition from noise to true expression
(u), essentially filtering genes that showed a small diffe-
rence between background and true expression (u = 3
for plant data; u = 10 for TCGA data).
To select tissue markers, genes were ordered by decreas-

ing Spec score and their cumulative sum was calculated.
Markers having the identical Spec score were secondarily
ordered by decreasing mean expression in the samples over
the background. Top-ranked markers included in the cu-
mulative Spec sum under the threshold (20, unless noted
otherwise in the text), and with a minimal tissue Spec score
of 0.15, were assigned as tissue markers.

Index of cell identity calculation
For each cell, a set of ICI scores, one for each tissue (t),
was calculated as follows.
For each marker gene (g), the normalized fragment per

million (FPM) expression value (eg) was multiplied by
the Spec score for the particular tissue sg,t, and the mean
of all weighted tissue markers was further weighted by
the proportion of markers present (expression > 0):

CIMt ¼
Xnt

g
eg � sg;t
nt

�
Xnt

g
expressed gð Þ

nt

where nt is the number of markers for tissue t.
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To determine significance, a population of background
ICIs was generated by selecting an equal number of ran-
dom genes as markers and calculating ICIs for 1,000
permutations. ICIs were considered as significant if they
were higher than the top 5% of permutations, unless
noted otherwise. ICIs were normalized such that the
sum of ICIs for each cell was equal to 1. If more than
one identity was significant at the 0.05 threshold level,
the cell was considered as chimeric or mixed identity, at
the proportions indicated by the ICI scores. If none of
the ICIs were significant at the 0.05 level, cell identity
was unclassified. All scripts were coded in R 2.15.2, and
source code is provided as Additional file 5.

ICI variability and ICI signal
To calculate ICI variability and ICI signal, the ICI vector
for each cell was calculated as detailed above, using a cu-
mulative information threshold that varied between 5
and 100 at increments of 1. Variability at information
threshold of i was measured as the Euclidean distance
between the ICI vectors for information threshold of
i and i + 1. ICI variability for all cells was plotted on the
same graph. Signal at information threshold of i was the
mean maximal ICI value for all cells at that information
threshold. Source code is provided as Additional file 5.

Glioblastoma and mouse embryonic stem cell data
analysis
Single cell mRNA-Seq data for mouse embryonic stem
cells were obtained from the Gene Expression Omnibus
(accession GSE54695) [11], omitting cells with fewer
than 1,000 detected genes. A unified scaled dataset for
four subtypes of glioblastoma tumors was downloaded
from [34] and was used without additional processing to
determine Spec scores, as described above. For the glio-
blastoma tumor data, normalized, scaled single-cell data
were obtained from the Gene Expression Omnibus
(accession GSE57872) [24]. To obtain FPM values,
downloaded data were converted back to absolute values
and renormalized by dividing each gene by its mean ex-
pression. ICIs were calculated as described above.

Data access
Data have been submitted to Gene Expression Omnibus,
accession numbers GSE46226 (single cell data), GSE64381
(CEL-SEQ profiles) and GSE64253 (QC profiling).

Additional files

Additional file 1: Figure S1. Variability in marker expressions in single
cells. Figure S2. Effect of number of markers used on identity specificity.
Figure S3. The effect of Spec marker selection and the ICI transformation
on the affinity of single cells using multidimensional scaling analysis.
Figure S4. Identity of mixed cells. Figure S5. Expression of vascular
markers in regenerating stele cells.

Additional file 2: Table S1. Datasets used to generate root tissue
markers.

Additional file 3: Table S2. Spec scores for root tissue markers.

Additional file 4: Table S3. Spec scores for glioblastoma markers.

Additional file 5: R implementation of the algorithm.
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